
DRAFT

Software Design Document for the Land Information System

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of Grand Challenge
Applications in the Earth, Space, Life, and Microgravity Sciences

Version 1.0

DRAFT

Revision history:
Version Summary of Changes Date
1.0 Initial release. 7/17/02

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

2

Table of Contents
Table of Contents .. 2
List of Figures .. 3
List of Tables.. 3
1. Introduction ... 4

1.1 Identification ... 4
1.2 Purpose and goals.. 4
1.3 Scope ... 4

2. LIS System Architecture and Component-Level Design... 5
2.1 LIS architecture diagram... 5
2.2 Data design.. 6

2.2.1 Global data structures... 6
2.2.2 Internal software data structures .. 8

2.3 Description for land surface modeling component ... 9
2.3.1 Purpose of the code .. 9
2.3.2 Structure ... 9
2.3.3 Implementation... 10

2.4 Description for parallel processing component... 11
2.4.1 Purpose of the code .. 11
2.4.2 Compute nodes job processing... 12
2.4.3 Parallelization scheme and master nodes job processing................................. 12

2.5 Description for GrADS-DODS server component.. 14
2.5.1 Purpose of the code .. 14
2.5.2 GrADS-DODS server structure.. 14

2.6 Description for data retrieving component.. 15
2.6.1 Purpose of the code .. 15
2.6.1 Implementation... 15

2.7 Description for system monitoring component... 16
2.7.1 Purpose of the code .. 16
2.7.2 Hardware monitoring data.. 16
2.7.3 Architecture and implementation ... 17

3. User Interface Design.. 18
3.1. User interface components ... 18
3.2 Objects and actions.. 19
3.3 User levels and security design ... 20

Appendix .. 21
References ... 21
Acronyms and Terms .. 22

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

3

List of Figures
Figure 1A: Current Land Data Assimilation System (LDAS) structure…………………..6
Figure 1B: Designed LIS structure and its components.. 6
Figure 2: LIS global data flow. ... 7
Figure 3. LIS land surface modeling architecture with ALMA and ESMF interfaces. 10
Figure 4: LIS land surface modeling flowchart. ... 11
Figure 5: Compute nodes flowchart for parallel computing of land surface modeling. ... 12
Figure 6: Parallel computing control flowchart (left) and parallelization scheme (right) of

an IO node. .. 13
Figure 7: GrADS-DODS client-server architecture. ... 15
Figure 8: LIS system monitoring and management architecture. 18
Figure 9: LIS user interface architecture... 19
Figure 10: Sample of web-based user interface objects. ... 20
Figure 11: Screenshot of LIS web entry page. .. 20

List of Tables
Table 1: LIS global data files .. 8
Table 2: Hardware monitoring and management data collection 17

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

4

1. Introduction

1.1 Identification

 This Software Design Document establishes the software design for the Land
Information System (LIS). LIS is a project to build a high-resolution, high-performance
land surface modeling and data assimilation system to support a wide range of land
surface research activities and applications.

 This document has been prepared in accordance with the requirements of the Task
Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01
Increasing Interoperability and Performance of Grand Challenge Applications in the
Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational
Technologies (formerly High Performance Computing and Communications) Project.

1.2 Purpose and goals

 This document serves as the blueprint for the software development and
implementation of the Land Information System (LIS).

 The design goals of LIS are near real-time, high-resolution (up to 1km) global land data
simulation executed on highly parallel computing platforms, with well defined, standard-
conforming interfaces and data structures to interface and inter-operate with other Earth
system models, and with flexible and friendly web-based user interfaces.

1.3 Scope

 This document covers the design of all the LIS software components for the three-year
duration of the LIS project. The document focuses primarily on the implementation of
the LIS software on a general-purpose Linux cluster system, and most of the component
designs also apply to an SGI Origin 3000 system. This document does not cover design
for other hardware/software platforms.

 Specifically, this design covers the following aspects of LIS:

• Realistic land surface modeling. LIS will simulate the global land surface
variables using various land surface models, driven by atmospheric “forcing data”
(e.g., precipitation, radiation, wind speed, temperature, humidity) from various
sources.

• High performance computing. LIS will perform high-performance, parallel
computing for near real-time, high-resolution land surface modeling research and
operations.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

5

• Efficient data management. The high-resolution land surface simulation will
produce a huge data throughput, and LIS will retrieve, store, interpolate, re-
project, sub-set, and backup the input and output data efficiently.

• Usability. LIS will provide intuitive web-based interfaces to users with varying
levels of access to LIS data and system resources, and enforce user security
policies.

• Interoperable and portable computing. LIS will incorporate the ALMA
(Assistance for Land surface Modeling Activities) and ESMF (Earth System
Modeling Framework) standards to facilitate inter-operation with other Earth
system models. LIS will also perform its functions on both generic Linux clusters
and SGI Origins with minimal modification of the LIS software.

2. LIS System Architecture and Component-Level Design

2.1 LIS architecture diagram

LIS is to be built upon the existing Land Data Assimilation System (LDAS), with new
components and expanded functionalities for the support of parallel processing, GrADS-
DODS server-based data management, ALMA and ESMF-compliance, web-based user
interfaces, and system management of a Linux cluster platform. Figure 1A and 1B show
the LDAS and LIS software architecture, respectively.

The function of LIS dictates a highly modular system design and requires all the
modules, or components, to work together smoothly and reliably. Figure 1B shows an
overview of the LIS software architecture and its components, and their interactions. LIS
will continuously take in relevant atmospheric observational data to force three different
land surface models, and the land surface simulation is carried out in a highly parallel
fashion. Meanwhile the large amount of output data will be efficiently managed to
facilitate reliable and easy access. Moreover, some of the components and their
interfaces, whenever appropriate, will conform to either the ALMA or ESMF standards,
or both. Finally, LIS also has software components to manage the parallel job processing
and monitor hardware status and manage them to ensure sustained high performance
output and high availability. Following is a list of LIS software components:

• Land surface modeling
• Parallel processing
• GrADS-DODS server
• Data retrieving
• System monitoring

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

6

Raw data on the Internet

Data
retrieving

Input Output

Land Surface Modeling

To atmospheric models

Input
data

Output
data

Single-
processor
platform

Figure 1A: Current Land Data Assimilation System (LDAS) structure.

Raw data on the Internet

Data
retrieving

GrADS-
DODS
server

GrADS-
DODS
server

Input Output

ESMF-compliant
Land Surface Modeling

Parallelization scheme

System
monitor

Web-
based
user

interface

Parallel
comput’g
control

System
manage-

ment
interface

To atmospheric models

Input
data

Output
data

ALMA standard

ESMF standard

Parallel computing hardware platform
(SGI Origin 3000 or Linux cluster)

LIS users

System management
console

Figure 1B: Designed LIS structure and its components.

2.2 Data design

 2.2.1 Global data structures

 Figure 2 shows the global logical data flow of LIS system. LIS will deal with three
categories of global data: parameter data, input forcing data and output data. At the top
level of the system design, the global data are represented by data files of various
formats.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

7

GrADS-
DODS
Server

GrADS-
DODS
Server

GrADS-
DODS
Server

GrADS-
DODS
Server

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Forcing Data
(GDAS/GEOS/AGRMET/NRL)

GrADS-
DODS
Server

Data
Pre-processor

Data
Retriever

Internet Users

 Forcing data

 Output data

Parameter data

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

Figure 2: LIS global data flow.

 The parameter data include the vegetation classification, land mask, etc., with an size of
about 136 GB. Since these data will not be updated frequently, we will put a copy of
these data on each compute node's local disk to reduce network traffic. With some
optimization, we expect all of the static data will fit on the node's 80 GB disk.

 The forcing data, fetched from various locations on the Internet, need to be fed to the
compute nodes at regular intervals. The total traffic is estimated to be 279 MB/day,
which is not significant compared to the output data traffic. We designate one of the
master nodes to fetch and pre-process the data, then send a copy of the forcing data to the
other master nodes via NFS system. When a compute node needs the forcing data, it will
contact the master node, which corresponds to the sub-cluster it belongs to without
bothering other master nodes. To further reduce the IO network traffic, each master node
will run the GrADS-DODS server to feed the compute nodes with the sub-set of the data
they need.

 The output data will be stored on the master nodes too, and served to users via a
GrADS-DODS server running on one of the master nodes. Since it is not feasible to store
the output in a single file (200 GB/day), we want to distribute the data across all the
master nodes. To keep the huge output data volume manageable, we designed a storage
scheme that will distribute the land surface variables in the output data across the master
nodes. Since there are 40-48 variables in the output data, with some of them having
multiple levels, we can let each master node to store the global data of only 6 or so of the
output variables. So on average, the I/O traffic is segregated and each master node is only

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

8

taking 1/8 of the total data traffic, and the subsequent operations by the GrADS-DODS
servers are greatly simplified.

Table 1 lists all the global data files and specifications.

Table 1: LIS global data files

Dataset Tentative name/location Desired/native
resolution Native format Approx size Update

frequency

UMD Vegetation
classification map

GVEG/UMD_60G0.01.txt 1/100 X 1/100 ASCII 65G Static

UMD Land mask GVEG/UMD60mask0.01.asc 1/100 X 1/100 ASCII 18G Static

Soil classification map BCS/sim60soil0.01.txt 1/100 X 1/100 ASCII 20G Static

Soil color map BCS/soicol60.01.bin 1/100 X 1/100 Binary 2G Static

Sand fraction file BCS/sand60.01.bfsa 1/100 X 1/100 Binary 6G Static

Silt fraction map BCS/silt60.01.bfsa 1/100 X 1/100 Binary 6G Static

Clay fraction map BCS/clay60.01.bfsa 1/100 X 1/100 Binary 6G Static

Porosity map BCS/por60.01.bfsa 1/100 X 1/100 Binary 6G Static

Slope map BCS/slope60.01.bfsa 1/100 X 1/100 Binary 2G Static

Koster tile space file GVEG/tile_info.0.01 TBD

Leaf area index (LAI) LDAS/BCS/lai.dat 1M

AVHRR-derived LAI
climatology

/GLDAS5/DATA/AVHRR_LAI 5G

Static file size 136G

NCEP GDAS Forcing
data file

/GLDAS4/DATA/GDAS/
Native T170,
~0.7deg

GRIB 50M/day (3.2M X 4
X4)

Every 6 hours

GEOS forcing data /GLDAS4/DATA/GEOS/BEST_LK 1 deg Binary 25M/day Every 3 hours

AGRMET SW flux data /GLDAS5/DATA/AGRMET/SWDN 48M/day Every 1 hour

AGRMET LW flux data /GLDAS5/DATA/AGRMET/CloudAGR 144M/day Every 1 hour

NRL Precipitation data /GLDAS1/DATA/NRL 1/4 degree 12M/day Every 6 hours

Total data input flux 279M/day

CLM output data OUTPUT 1/100 X 1/100 GRIB 200G/day

Total data output flux 200G/day

 LIS Data Files and Estimated Data Volume for LIS with 1/100 X 1/100 (~1km X 1km) Resolution, based on
the data used for GLDAS 1/4 X 1/4 (4/12/02).

~48km

Estimated Output Data Volume for LIS (1/100 X 1/100) Resolution, Based on GLDAS Runs with 2 X 2.5
Resolution. Data output interval is assumed to be the same.

(5 times more if in binary format)

2.2.2 Internal software data structures
LIS will use ASCII, binary, NetCDF, and GRIB as internal software data structures.
GRIB is the major internal data strucure. Data structures will be managed and reviewed
as part of the code walkthrough process.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

9

2.3 Description for land surface modeling component

2.3.1 Purpose of the code

The land surface modeling component is designed to perform high-performance, parallel
simulation of global, regional or local land surface processes with initially three land
surface models: the CLM model, the NOAH model and the VIC model. Specifically, the
land surface modeling component will interact with the data management components to
obtain properly formatted input forcing data, and pass the forcing data, alone with other
static parameters, to the three land surface models through the land surface driver. Each
of the land surface model carries out the simulation on a distributed, parallel hardware
platform, either a Linux cluster or a SGI Origin 3000. The results are passed to the output
component, which interacts with the data management subsystem to handle the output
data. The parallelization process is managed by the system management components. The
component provides interface in accordance with ALMA and ESMF standards, wherever
applicable.

2.3.2 Structure

Figure 3 shows the software structure of the land surface modeling component. The
component is designed to be modular with well-defined interfaces that comply with
ALMA or ESMF standards. The interface between the land model driver and three land
models, CLM, NOAH and VIC, will comply with ESMF and will be general enough so
that additional land surface models can be added without much modification of the code.
The land surface modeling component is designed in a way that multiple copies can run
as different processes in parallel, independent of each other, with each of them processing
a different piece of land surface.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

10

Land Model Driver

GrADS-DODS

Input data cache and
pre-processor

ALMA

ALMA-compliant
LIS output

Input data

ESMF

CLM

ESMF

NOAH

ESMF

VIC

ESMF

Output data cache and
post-processor

ALMA

ESMF interpolation and re-projection
ALMA

Interface to atmospheric
models

Figure 3. LIS land surface modeling architecture with ALMA and ESMF interfaces.

2.3.3 Implementation

 The land surface modeling subsystem is designed to be running in parallel, both on a
Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors.
Although the hardware architecture differs greatly between the distributed-memory Linux
cluster and the shared-memory SGI Origin 3000, our implementation of the land surface
modeling programs will make this architectural difference fairly transparent: On the
Linux cluster, each node will run a copy of the land surface modeling process; on the SGI
Origin, each CPU will run a copy. Thus we establish a direct correspondence between a
node in the Linux cluster and a CPU in the Origin 3000, and the hardware architectural
differences will not matter to our design of the software; The land modeling scheme will
be able to run on both platforms with minimal modification. So in this document
whenever we refer to a node in the Linux cluster, it applies equally to a CPU in the
Origin 3000.

 Interoperability is achieved by following both the ALMA and ESMF standards closely.
By following the ALMA standard, the LIS land surface modeling system is guaranteed to
exchange data with other land surface modeling systems that are also ALMA-compliant.
ESMF standard will allow us to interact with other Earth system models, such as
atmospheric models or environmental models with standard interfaces.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

11

S et up m ode l
param ete rs

R ead resta rt files

In itia lize ou tpu t
a rrays and an a lys is

G et base fo rc ing

LS M
 sta rts

G et con figu ra tion

F in ish a ll
tiles?

G et rad ia tion fo rc ing

G et p rec ip fo rc ing

A pp ly e leva tion
correction to fo rc ing

T ransfe r fo rc ing in to
m ode l tiles

R ead m ode l spec ific
da ta : LA I, a lbebo

C a ll C LM /N O A H /V IC

W rite ou tpu t

 W rite da ily res ta rts

R etu rn su rface
fie lds to a tm o s m d ls

W rite B C and IC
da ta

N o

Y es

E nd tim e reached
N o

Y es

M ode ling s ta rts

M ode ling ends

Figure 4: LIS land surface modeling flowchart.
 As shown in Figure 4, and described in detail in the land surface model documentation,
land surface models proceed in a manner similar to other physical models. Modeling
proceeds given prior knowledge of the spatial and temporal domains of the simulation, in
addition to initial conditions and parameters required to solve the equations of water and
energy conservation within that domain. Modeling proceeds according to increments of
time (“time steps”, typically 15 minutes), until the ending time is reached and data is
written out for future runs and analysis.

2.4 Description for parallel processing component

2.4.1 Purpose of the code
 The parallel processing code is to break the whole processing job into properly sized
small pieces on the master nodes, and then to distribute the pieces to the compute nodes,

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

12

to monitor the progress of the small jobs, to maintain balanced loads across the compute
nodes, and finally, to collect and assemble the finished pieces and pass the results to the
output. The parallel processing component plays a critical role to connect the land surface
modeling job to the underlying multi-processor parallel computing hardware platform, in
our case, a Linux cluster or an SGI Origin 3000, to achieve the goal of near real-time
processing of high-resolution land surface data.

2.4.2 Compute nodes job processing

 A compute node’s job is straightforward: it runs a copy of the land surface modeling
subsystem in its process space, computes a piece of land surface obtained from the master
node, and requests another piece of land surface from the master node as soon as it
finishes the current piece, until the master node refuses to give it any pieces, in which
case there are no more land pieces are available and the compute node’s job is done.
Figure 5 shows the flow chart of the compute node’s job handling process.

Node k gets
land piece k

Node k computes
land piece k

Node k finishes
land piece k

Node k notifies
master node and

sends data

Compute node k
starts

Node k requests
a land piece

Request
granted?

Run
finished

Yes

No

Figure 5: Compute nodes flowchart for parallel computing of land surface modeling.

2.4.3 Parallelization scheme and master nodes job processing
 Job volume: We estimate that at 1km resolution LIS will deal with ~50,000 times more
grid points than the 2ºx2.5º resolution GLDAS . To satisfy the requirements of real-time
operation, the job, which includes a gridded representation of the global land surface,

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

13

must be split into smaller pieces and run in parallel. We plan to divide the global surface
into 10,000 small land pieces, and with 1km resolution, each piece would require about 5
times as many computations as the 2ºx2.5ºGLDAS , and will take a single computing
node about 200MB memory to run, and 10 minutes to finish a 1-day simulation, based on
the initial performance baselining of GLDAS running at both 2ºx2.5º and 0.25ºx0.25º
resolutions. The Linux cluster can consume approximately 200 pieces per round, and
under ideal conditions, it will take the whole cluster about 50 rounds to finish the whole
job. This will take 500 minutes, or about 9 hours, to finish a 1-day simulation of the
whole global land surface, which satisfies the real-time requirement with enough extra
room. We expect that the timings on the SGI Origin will be comparable to those on the
cluster, although memory and disk limitations, some imposed by the queue structure, will
likely prohibit effective use of that system for demonstrating LIS in a near-real-time
mode. However, we plan to demonstrate the LIS on the SGI Origin system as proof-of-
concept.

IO node starts

Divide globe into N
land pieces, put in

unfinished pool

Grant node k land
piece n

Any node
requests?

Start timer k

No

No

No

Yes, timer k
expired

Yes, node k requested

Yes, node k
reported

Any land
pieces left?

Run
finished

No

Any node reports
finished job?

Any timer
expired?

Reset timer k
remove land piece n

from the pool

Assume node k
crashed, return

piece n to the pool

Yes

Keep track of the
3 pools

n n

n n

n n

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Figure 6: Parallel computing control flowchart (left) and parallelization scheme (right) of an IO

node.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

14

 Parallelization paradigm: The design uses the slightly modified version of the “pool of
tasks” scheme for the parallel processing of the land pieces. One of the master nodes will
keep three tables on hand when starting the job: table of unfinished-jobs, finished-jobs,
and jobs-fetched. At the beginning, the 10,000 land pieces are listed in the "unfinished"
table, and each compute node comes to the master to fetch a piece from it, and starts
working on it. The master node then moves the fetched jobs to the "jobs-fetched" table,
and starts a timer for each fetched job. When a compute node finishes a job and notifies
the master node before the job’s corresponding timer runs out, this piece is regarded a
finished job, and the master node moves it from the "fetched" table to the "finished"
table. And the compute node goes on to fetch another job until the "unfinished" table is
empty. If a fetched job's timer runs out before the compute node reports back, the master
node then assumes that that particular compute node must have crashed, and then moves
that timed-out job from the "fetched" table back to the "unfinished" table for other
compute nodes to fetch. Figure 6 shows the flowchart (left) of the master node’s job
handling and scheduling process, and the various status of the three tables (right) the
master node uses to keep track of the job progress at different corresponding stages in the
flowchart.

2.5 Description for GrADS-DODS server component

2.5.1 Purpose of the code

The data management subsystem is composed of the following functions: input data
retrieval from the Internet, data pre-processing and post-processing, data interpolation
and sub-setting, output data aggregation, storage, backup and retrieval. It links the other
subsystem together, and ensures smooth end-to-end data flow, from the input raw data all
the way to the output data satisfying LIS users’ various requests.

2.5.2 GrADS-DODS server structure

 GrADS-DODS servers will be employed both to serve the input data to the land
surface computing code, and to serve the output to the Internet users. A GrADS-DODS
server uses a typical client-server architecture to communicate with the DODS clients.
The communication protocol between a client and a server is HTTP. A GrADS-DODS
server has two parts, the front end Java servlets contained in Tomcat and the back end
GrADS running in batch mode. The HTTP queries are processed by the front end Java
servlets, managed by Tomcat application server. Data-retrieving, sub-setting and
processing on the server side are performed by the GrADS engine.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

15

Figure 7: GrADS-DODS client-server architecture.

2.6 Description for data retrieving component

2.6.1 Purpose of the code
 The data retrieving component locates and downloads various atmospheric forcing
data sets, as specified in Table 1, at regular intervals, from the Internet to LIS’s local
disks. The data retrieving component will also perform some basic pre-processing on the
forcing data.

2.6.1 Implementation
 The data retrieving component is implemented as a multi-process structure, with each
process dealing with a specific data set, so in case a data set takes unusually long time, it
will not block the other processes’ progress. Following is the pseudo-code of the data
retrieving component:

Define data sources:
 DS[1]: URL1
 DS[2]: URL2
 …
 DS[n]: URLn
End Define data sources

For I=1, n Do
 Start process(I) (non-blocking start)
End For

Define Process (I)
 Fetch data from DS[I];
 Pre-process DS[I];

internetDODS requests and
compressed data exchanged

via HTTP

GRIB data
NetCDF data

binary data

HDF data

datasets in any format
supported by GrADS

GrADS
batch mode

interface
code

DODS server
libraries

GrADS-DODS Server
extracts meta-

data and subsets
maps DODS requests

to GrADS services

Java
servlet

parses requests,
packages data

handles HTTP
protocol

DODS client libraries

GrADS

Matlab

IDL

etc..
data appears to client as local file, in a
standard format (i.e, NetCDF, etc.)

Client

handles HTTP, unpacks data

etc..

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

16

 Return;
End Define Process (I)

2.7 Description for system monitoring component

2.7.1 Purpose of the code

The system monitoring component is responsible for monitoring, maintaining and
administering the LIS system to ensure its reliable operation and optimal performance
output.

We categorize the system management function into four levels: hardware level,
interconnect level, operating system level and application software level. For the SGI
Origin 3000 platform, we are not involved in the management of the hardware and
interconnect levels. But for the Linux cluster, the hardware and interconnect level
management is our responsibility and is critical to the overall stability and performance
of the LIS system.

The hardware level system management involves power-up and shutdown of the nodes,
booting strategy and hardware status monitoring. Interconnect level management requires
the monitoring of the link status of the network nodes, bandwidth usage and traffic
statistics. Operating system level management takes care of system resource usages, such
as CPU, memory and disk space usage. Application level management oversees the
progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and
obtain performance profiles for fine-tuning.

2.7.2 Hardware monitoring data

The following table summarizes the system data of various levels the management
subsystem is designed to collect and analyze.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

17

Table 2: Hardware monitoring and management data collection

Category Data Items Update frequency
Overall cpu/mem of each process 1min
Overall progress of whole job 2min
Progress of each process 1min
Timing of each module sampled, off-line
Memory usage of each module sampled, off-line
Total memory usage & biggest user 2min
Total CPU usage & biggest user 2min
Total disk space usage 2min
System up-time and running procs 2min
Bandwidth usage of each node 2min
Bandwidth usage of switches 2min
Latency measurements 2min
Packet drops measurements 2min
Fan speeds 10min
Chasis temperature 10min
Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

2.7.3 Architecture and implementation

The variety of system variables and management duties requires us to design a
management system with modules performing individual and well-defined tasks. Figure 8
shows the structured design of the system management functionalities, with the Linux
cluster platform as the example.

On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”
technology for powering up the nodes smoothly in a well-defined pattern. The nodes will
be able to boot across the network with the PXE technology, as well as from the local
disk, to centralize system software management. After booting, each node’s hardware
parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will
be collected by kernel modules called “lm-sensors”, and sent to the central management
station with web-based display with automatic updates.

On the interconnect level, we will use SNMP protocol as the underlying data collection
and management mechanism, interfaced with MRTG for web-based display of network
statistics. Additional network data can also be collected by Big Brother system and
network monitor, also with web output.

On the operating system level, we will use SNMP and various OS shell commands and
utilities to collect system data, and use MRTG and Big Brother as the interface.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

18

On the application level, we will develop CGI scripts, interfaced with OS commands and
utilities, to provide a web-interface for the monitoring and control of LIS jobs and
processes. Standard performance profiling and debugging tools will be used off-line to
analyze sample runs for trouble shooting and performance fine-tuning.

OS resource
management

Interconnect
management

Hardware
management

Application
management

Monitoring and
management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software
system

OS commands

SNMP

PXE

Figure 8: LIS system monitoring and management architecture.

3. User Interface Design

3.1. User interface components

The user interface subsystem takes a typical multi-tier client-server system architecture.
On the client side, a user has three types of client programs to use as the front-end: a web
browser, a ftp client program (which can be integrated in a web browser), or a DODS
client program. On the server side, a general purpose web server will be used to serve
clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS
clients, and a FTP server to server ftp clients. Besides theses components, CGI scripts
and CGI-GrADS gateway scripts will be used as the middleware to perform dynamic
processing based on users’ interactive requests sent through web browsers. Figure 9
shows the user interface architecture design.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

19

GrADS-
DODS
Server

Web
Server

FTP
Server

Web
Browser

Web
Browser

DODS
Client

FTP
Client

CGI-
GrADS

Gateway

INTERNET

LIS

Non-interactive
content

Static web text
Static images

Data index

Interactive content
Dynamic images
User defined data

tables
Get data via DODS

protocol Original data

Web
Browser

CGI
Web

Server

Job
Scheduler

Web-based
Job submission

The Cluster

Figure 9: LIS user interface architecture.

3.2 Objects and actions
Figure 10 shows representative examples of the web-base interface objects to be
implemented in the user interface. Text boxes ask for a user’s free input, which are
mostly used in the user authentication process. Check boxes prompt a user to make one or
more choices (Radio buttons ask for one choice). Drop-down menus limit a user’s options
to predefined ones, which are suitable for model parameter input. Check boxes and text
boxes can be combined to provide a user with selectable search criteria, for example.
Finally, graphics are either pre-produced or produced as results of a user’s data query or
data analysis. Figure 11 is a screenshot of the LIS entry page.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

20

Username:

Password

Search data by:
Date
Variable
Longitude
Latitude

FTP data
Get data by GrADS
Get data by DODs clients

Start date
Enter LIS parameters

End date
Variable
Longitude
Latitude

Text Boxes Check Boxes
Check Boxes /Text Boxes

Drop-down Menu

Graphics

Figure 10: Sample of web-based user interface objects.

Figure 11: Screenshot of LIS web entry page.

3.3 User levels and security design
 Outside users accessing the LIS are categorized into three levels, associated with
different levels of data access and security requirements.

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

21

 Level 1 users are the general public, who will access the LIS data primarily through a
standard web browser. Information provided to this class includes static images and text,
and some limited interactive content such as GIF/JPG/PNG images generated on the fly
in response to users' regulated web input. The static content, most of which is static html
pages, is served via the web server, while the interactive content is generated via a three-
tier architecture with server-side GrADS as the image engine and below it the GrADS-
DODS server as the data engine to feed the server-side GrADS. This group of users does
not have direct access to the data or LIS scientific computing power system, and their
usage of system resources is very limited. Therefore, for this class of users we do not
enforce any additional authentication or authorization procedures. It is also our intention
to facilitate easy access to the data for education and outreach purposes.

 Level 2 users have direct access to LIS data, either through our GrADS-DODS server
by using a DODS client, or directly through ftp fetches. The GrADS-DODS server
provides the users with the ability and flexibility to get only a sub-set of the data they
need. To be authorized as Level 2 users, they will have to register with us first by filling
out web forms, and they will be authenticated using password and source IP addresses
before accessing the data. The GrADS-DODS server will impose a limit on system
resource usages.

 Level 3 users have the highest access level: in addition to all the Level 2 and Level 1
access privileges, they will be able to access the parallel computing power of LIS system.
They will be able to submit their jobs, and test their land models, etc., through a web
interface. A number of CGI scripts will be interfacing the web input and the LIS system’s
job scheduler. The number of these users will be limited, and the authorization and
authentication process will be enforced in compliance with NASA's and GSFC’s relevant
regulations.

Appendix

References

ALMA: http://www.lmd.jussieu.fr/ALMA/

CLM: http://www.cgd.ucar.edu/tss/clm/

ESMF: http://www.esmf.ucar.edu/

GrADS-DODS server: http://grads.iges.org/grads/gds/

LDAS and GLDAS: http://ldas.gsfc.nasa.gov/

NOAH: http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

“Pool of tasks”: H.P. Hofstee, J.J. Likkien, and J.L.A. Van De Snepscheut: "A Distributed

Implementation of a Task Pool". Research Directions in High-Level Parallel Programming

Languages, pp 338--348, 1991.

VIC: http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html

http://www.lmd.jussieu.fr/ALMA/
http://www.cgd.ucar.edu/tss/clm/
http://www.esmf.ucar.edu/
http://grads.iges.org/grads/gds/
http://ldas.gsfc.nasa.gov/
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html

Land Information System Software Design Document (DRAFT) Version 1: 7/17/02

22

Acronyms and Terms

ALMA: Assistance for Land-surface Modeling Activities

API: Application Programming Interface

CGI: Common Gateway Interface

CLM: Community Land Model

DODS: Distributed Ocean Data System

ESMF: Earth System Modeling Framework

GLDAS: Global Land Data Assimilation System

GrADS: Grid Analysis and Display System

LDAS: Land Data Assimilation System

LIS: Land Information System

MRTG: Multi Router Traffic Grapher

NFS: Network File System

NOAH: National Centers for Environmental Prediction, Oregon State University, United
States Air Force, and Office of Hydrology Land Surface Model

PXE: Preboot Execution Environment

RAID: Redundant Array of Inexpensive Disks

SNMP: Simple Network Management Protocol

VIC: Variable Infiltration Capacity Land Surface Model

	Table of Contents
	List of Figures
	Figure 1B: Designed LIS structure and its components.	6
	1. Introduction
	1.1 Identification
	1.2 Purpose and goals
	1.3 Scope

	2. LIS System Architecture and Component-Level Design
	2.1 LIS architecture diagram
	2.2 Data design
	2.2.1 Global data structures
	2.2.2 Internal software data structures

	2.3 Description for land surface modeling component
	2.3.1 Purpose of the code
	2.3.2 Structure
	2.3.3 Implementation

	2.4 Description for parallel processing component
	2.4.1 Purpose of the code
	2.4.2 Compute nodes job processing
	2.4.3 Parallelization scheme and master nodes job processing

	2.5 Description for GrADS-DODS server component
	2.5.1 Purpose of the code
	2.5.2 GrADS-DODS server structure

	2.6 Description for data retrieving component
	2.6.1 Purpose of the code
	2.6.1 Implementation

	2.7 Description for system monitoring component
	2.7.1 Purpose of the code
	2.7.2 Hardware monitoring data
	2.7.3 Architecture and implementation

	3. User Interface Design
	3.1. User interface components
	3.2 Objects and actions
	3.3 User levels and security design

	Appendix
	References
	Acronyms and Terms

